7. Akademik Unvanlar
Yardımcı
Doçentlik Tarihi : 24/09/2017
Doçentlik
Tarihi : 23/12/2022
Profesörlük
Tarihi : -
8. Yönetilen Yüksek Lisans ve
Doktora Tezleri
8.1. Yüksek Lisans Tezleri
1. Orhan Dağ, 2021, Kesirli mertebeden bazı matematiksel modeller ve nümerik çözümleri.
2. Elif Denk, 2022, Tümör-virüs ilişkisini ve tümörün viroterapi yöntemi ile tedavisini içeren kesirli tümör büyüme modeli.
8.2. Doktora Tezleri
1. …
9. Yayınlar
9.1. Uluslararası hakemli
dergilerde yayınlanan makaleler (SCI, SSCI, Arts and Humanities)
1. İğret
Araz S., 2019. A fractional optimal
control problem with final observation governed by wave equation, Chaos, 29 (2).
2. Subaşı M., İğret Araz S., 2019. Numerical regularization of optimal control for the coefficient function
in a wave equation, Iranian Journal of Science and Technology Transactions A:
Science, 1-9.
3. Atangana A., İğret Araz S., 2019. Fractional stochastic modelling illustration with modified Chua attractor, The European Physical Journal Plus, 134:160.
4. Atangana A., İğret Araz S., 2019. Analysis of a new partial integro-differential equation with mixed fractional operators, Chaos, Solitons & Fractals, 127, 257-271.
5. İğret Araz S., Subaşı M., 2019. On the optimal coefficient control in a heat equation, Discrete &Continuous Dynamical Systems- S.
6. İğret Araz S., 2020. Numerical analysis of a new Volterra integro-differential equation involving fractal-fractional operators, Chaos, Solitons & Fractals, 130, 109396.
7. Atangana A., İğret Araz S., 2019. New numerical method for ordinary differential equations: Newton polynomial, Journal of Computational and Applied Mathematics, 112622.
8. Atangana A., İğret Araz S., 2020. New numerical approximation for Chua attractor with fractional and fractal-fractional operators, Alexandria Engineering Journal.
v 9. Atangana A., İğret Araz S., 2020. Extension of Atangana-Seda numerical method to partil differential equations with integer and non-integer order, Alexandria Engineering Journal.
10. Mekkaoui T., Atangana A., İğret Araz S., 2020. Predictor-corrector for non-linear differential and integral equation with fractal-fractional operators, Engineering with Computers, 1-10.
11. Atangana A., İğret Araz S., 2020. Atangana-Seda numerical scheme for Labyrinth attractor with new differential and integral operators, Fractals.
12. Atangana
A., İğret Araz S., 2021. Modeling third waves of Covid-19 spread with piecewise
differential and integral operators: Turkey, Spain and Czechia,
Results in Physics.
13.
Atangana
A., İğret Araz S., 2021. Mathematical
model of retractions: Facts, analysis and recommendations, submitted.
14.
Atangana
A., İğret Araz S., 2022. Deterministic-Stochastic
modeling: A new direction in modeling real world problems with crossover
effect, Mathematical Biosciences and Engineering, 19 (4).
15.
İğret
Araz S., 2021. New
class of volterra integro-differential equations with fractal-fractional
operators: Existence, uniqueness and numerical scheme,
Discrete & Continuous Dynamical Systems-S.
16.
Atangana
A., İğret Araz S., 2021. New Concept on Calculus: Piecewise differential and
integral operators, Chaos, Solitons and Fractals.
17.
Atangana
A., İğret Araz S., 2021. A novel Covid-19 model with fractional differential
operators with singular and non-singular kernels: analysis and numerical scheme
based on Newton polynomial, Alexandria Engineering Journal.
18.
Atangana
A., İğret Araz S., 2021. Nonlinear equations with global differential and
integral operators: Existence, uniqueness with application to epidemiology,
Results in Physics, 103593.
19.
İğret
Araz S., 2021. Analysis of a Covid-19 model: Optimal control, stability and
simulations, Alexandria Engineering Journal.
20.
Atangana
A., İğret Araz S., 2020. Mathematical model of COVID-19 spread in Turkey and
South Africa: Theory, methods and applications, Advances in Difference Equations.
21. Atangana A., İğret Araz S., 2021.
Modeling and forecasting the spread of Covid-19 with stochastic and
deterministic approaches: Africa and Europe, Advances in Difference Equations.
22. Atangana A., İğret Araz S., 2022, Rhythmic behaviors of the human heart with piecewise derivative, Mathematical Biosciences and Engineering, 19 (4).
23. Atangana A., İğret Araz S., 2022, Advanced analysis in epidemiological modeling: Detection of wave, AIMS Mathematics, 7(10), 2022.
24. Atangana A., İğret Araz S., 2022, Step forward in epidemiological modeling: Introducing the indicator function to capture waves, Results in Physics, 38, 2022.
25. Atangana A., İğret Araz S., 2022, Piecewise derivatives versus short memory concept: Analysis and application, Mathematical Biosciences and Engineering, 19 (8), 2022.
26. Atangana A., İğret Araz S., 2022, Deterministic-Stochastic modeling: A new direction in modeling real world problems with crossover effect, Mathematical Biosciences and Engineering, 19 (4).
27. Akbulut Arık I., İğret Araz S., 2022, Crossover behaviors via piecewise concept: A model of tumor growth and its response to radiotherapy I Akbulut Arık, S İğret Araz Results in Physics.
28. Atangana A., İğret Araz S., 2023, Piecewise differential equations: Theory, methods and applications, AIMS Mathematics 8 (7).
12
9.2. Uluslararası diğer hakemli
dergilerde yayınlanan makaleler
1.
Subaşı M., İğret Araz S., Güngör H., 2017.
On the Numerical Solution of Two Dimensional Schrödinger Equation,
International Journal of Mathematical Research, 6, 1, 1-12.
2.
Subaşı M., Güngör H., İğret Araz S., 2017.
On the Control of End Point Tensions in a Vibration Problem, International
Journal of Modeling and Optimization, 7,2, 74-77.
3.
İğret Araz S., Subaşı M., 2018. On the
Control of Coefficient Function in a Hyperbolic Problem with Dirichlet
Conditions, International Journal of Differential Equations, Vol. 2018, 6
pages.
9.3. Uluslararası bilimsel toplantılarda sunulan ve
bildiri kitabında basılan bildiriler
1.
İğret Araz S., Aykut A., (2013). On approximate
solutions of a boundary value problem with retarded argument. 2nd International
Eurasian Conference on Mathematical Sciences and Applications, Saray Bosna,
Bosna Hersek.
2.
Subaşı M., Durur H., İğret Araz S., (2014). Stable Solutions
to an Optimal Control Problem Governed by a Schrödinger Equation, 3rd
International Eurasian Conference on Mathematical Sciences and Applications,
Viyana, Avusturya.
3.
İğret Araz S., Subaşı M., Durur H., Güngör H., (2015).
On Obtaınıng Stable Solutıon for a Hyperbolıc Coeffıcıent Control Problem, International Conference
on Pure and Applied Mathematics, Van,
TURKEY.
4.
İğret Araz S., Subaşı M., (2016). On Investigating
Stable Solution for Vibration Problem of a String with Transverse Elastic
Force, International Conference on Advances in Natural and Applied Sciences, Antalya, TURKEY.
5.
İğret Araz S., (2018). On Optimal Control of Initial
Status in a Hyperbolic System, Third International Conference on Computational
Mathematics and Engineering Sciences,
KKTC, TURKEY.
6.
İğret Araz S., (2018). On numerical solution of an
optimal control problem involving hyperbolic equation, 2nd International
Conference on Pure and Applied Mathematics, Van, TURKEY.
7. Atangana A., İğret Araz S., (2019). Analysis of a new partial integro-differential equation with mixed fractional operators, Antalya, TURKEY.
9.4. Yazılan uluslararası
kitaplar veya kitaplarda bölümler
1.
Atangana
A., İğret Araz S., (2021). New numerical scheme with Newton Polynomial: Theory,
Methods and Applications, Academic Press Elsevier, ISBN:978-0323854481.
2. Atangana A., İğret Araz S., (2022). Fractional Stochastic Differential Equations: Applications to Covid-19 Modeling, Springer.
9.5. Ulusal hakemli dergilerde
yayınlanan makaleler
1. İğret
Araz S., Aykut A., 2014. Geciken Değişkenli Bir
Sınır Değer Probleminin Yaklaşık Çözümü Üzerine, Erzincan Üniversitesi Fen
Bilimleri Enstitüsü Dergisi, 4, 1, 93- 103.
2. İğret
Araz S., Durur H., 2018. Galerkin Method for Numerical Solution of Two
Dimensional Hyperbolic Boundary Value Problem with Dirichlet Conditions , Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi,
7, 1, 1-11.
3. İğret
Araz S., 2018. On Optimal Control of Initial Status in a Hyperbolic System, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,
94-98.
4. İğret Araz S., 2020. On numerical solution of an optimal control problem including hyperbolic equation, Bitlis Eren University Journal of Science, 9(3), 1091-1101.
5. İğret Araz S., 2021. Numerical approximation with Newton polynomial for the solution of a tumor growth model including fractional differential operators, Erzincan University Journal of Science and Technology, 14(1), 249-259.
9.6. Ulusal
bilimsel toplantılarda sunulan ve bildiri kitabında basılan bildiriler
9.7. Diğer yayınlar
1. …
2.
…
10.Projeler
11.İdari Görevler
Görev adı
|
Üniversite/Fakülte
|
Bölüm
|
Baş-Bit
|
|
|
|
|
12.Bilimsel ve Mesleki
Kuruluşlara Üyelikler
1.
…
2.
…
13.Ödüller
14.Son iki yılda verdiğiniz
lisans ve lisansüstü düzeydeki dersler için aşağıdaki tabloyu doldurunuz.
Akademik
Yıl
|
Dönem
|
Dersin
Adı
|
Haftalık
Saati
|
Öğrenci
Sayısı
|
Teorik
|
Uygulama
|
Lisans
2017-2018
|
Güz
|
Elementer Sayı Kuramı
|
3
|
0
|
60
|
Genel
Matematik
|
6
|
0
|
120
|
Bahar
|
Analitik
Geometri II
|
3
|
0
|
36
|
Diferansiyel
Denklemler
|
4
|
0
|
38
|
Uygulamalı
Matematik II
|
3
|
2
|
30
|
Genel
Matematik II
|
4
|
0
|
120
|
Lisans
2018-2019
|
Güz
|
Elementer
Sayı Kuramı
|
3
|
2
|
65
|
Genel
Matematik
|
6
|
0
|
50
|
Matematik
I
|
4
|
0
|
35
|
Analitik
Geometri I
|
3
|
0
|
35
|
Bahar
|
Analitik Geometri II
|
3
|
0
|
40
|
Diferansiyel Denklemler
|
4
|
0
|
40
|
Lineer Cebir II
|
3
|
0
|
70
|
Yüksek Lisans
2018-2019
|
Güz
|
Kısmi
Diferansiyel Denklemlerin Sayısal Çözümleri
|
3
|
0
|
2
|
Fonksiyonel
Uzaylarda Extremal Problemler
|
3
|
0
|
2
|
Kesirli
Diferansiyel Denklemler Teorisi
|
3
|
0
|
2
|
Uzmanlık
Alan Dersi
|
8
|
0
|
1
|
Yüksek
Lisans Semineri
|
1
|
0
|
1
|
Yüksek
Lisans Tez Hazırlık
|
1
|
0
|
1
|
Bahar
|
-----
|
|
|
|
|
|
|
|
|
Not: Açılmışsa, yaz döneminde verilen
dersler de tabloya ilave edilecektir.